A semi-discrete finite element method for a class of time-fractional diffusion equations.
نویسندگان
چکیده
As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly used in the related mathematical descriptions. These models usually involve long-time-range computation, which is a critical obstacle for their application; improvement of computational efficiency is of great significance. In this paper, a semi-discrete method is presented for solving a class of time-fractional diffusion equations that overcome the critical long-time-range computation problem. In the procedure, the spatial domain is discretized by the finite element method, which reduces the fractional diffusion equations to approximate fractional relaxation equations. As analytical solutions exist for the latter equations, the burden arising from long-time-range computation can effectively be minimized. To illustrate its efficiency and simplicity, four examples are presented. In addition, the method is used to solve the time-fractional advection-diffusion equation characterizing the bromide transport process in a fractured granite aquifer. The prediction closely agrees with the experimental data, and the heavy-tail decay of the anomalous transport process is well represented.
منابع مشابه
A numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملA semi-analytical finite element method for a class of time-fractional diffusion equations
As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly employed in the related mathematical descriptions. These models usually involve longtime range computation, which is a critical obstacle for its application, improvement of the computationa...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
In this paper, we study the time–space fractional order (fractional for simplicity) nonlinear subdiffusion and superdiffusion equations, which can relate the matter flux vector to concentration gradient in the general sense, describing, for example, the phenomena of anomalous diffusion, fractional Brownian motion, and so on. The semi-discrete and fully discrete numerical approximations are both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 371 1990 شماره
صفحات -
تاریخ انتشار 2013